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ABSTRACT
The goal of the PADS project, which started in 2001, is to make
it easier for data analysts to extract useful information from ad hoc
data files. This paper does not report new results, but rather gives an
overview of the project and how it helps bridge the gap between the
unmanaged world of ad hoc data and the managed world of typed
programming languages and databases. In particular, the paper re-
views the design of PADS data description languages, describes the
generated parsing tools and discusses the importance of meta-data.
It also sketches the formal semantics, discusses useful tools and
how can they can be generated automatically from PADS descrip-
tions, and describes an inferencing system that can learn useful
PADS descriptions from positive examples of the data format.

Categories and Subject Descriptors
D.3.m [Programming languages]: Miscellaneous

General Terms
Languages, Algorithms

Keywords
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1. WHY PADS
Traditional databases and XML-based systems provide rich in-

frastructure for managing well-behaved data, but provide little sup-
port for ad hoc formats, which we define to be any semi-structured
data format for which parsing, querying, analysis, or transforma-
tion tools are not readily available. Vast amounts of useful data are
stored and processed in such ad hoc formats, despite the existence
of standard formats for semi-structured data. Examples arise from
a myriad of domains, including finance, health care, transportation,
telecommunications, and the sciences [11].

For a number of reasons, processing ad hoc data is challenging.
Ad hoc data typically arrives “as is”: analysts are lucky to get the
data at all and have little chance of getting suppliers to standard-
ize its format. Documentation for the format is often incomplete,
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out-of-date, or completely non-existent. Such data frequently con-
tain errors for a variety of reasons, including malfunctioning equip-
ment, non-standard representations of missing values, human error
in entering data etc. Handling such errors is challenging because
of the variety of errors and because the appropriate response is
application-dependent. Some applications require the data to be
error free and need to halt processing if any errors are detected.
Others can simply discard erroneous values, while still others want
to study the errors in detail. All of these challenges are exacerbated
by the fact that ad hoc data sources often have high volume. For
example, AT&T’s Altair project accumulates billing data at a rate
of 250-300GB/day, with occasional spurts of 750GBs/day.

Finally, someone has to write a parser for a new format before
anyone can use the data. People tend to use C, PERL, or PYTHON
for this task. This approach is tedious and error-prone, complicated
by the lack of documentation, convoluted encodings designed to
save space, the need to produce efficient code, and the need to han-
dle errors robustly to avoid corrupting down-stream data. More-
over, the parser writers’ hard-won understanding of the data ends
up embedded in parsing code, making long-term maintenance diffi-
cult for the original writers and sharing the knowledge with others
nearly impossible.

The PADS project started with the observation that an appropri-
ately designed, declarative data-description language could help
bridge the gap between the unmanaged world of ad hoc data and
the managed world of strongly typed programming languages and
databases and thereby help alleviate many of the concerns men-
tioned above. To this end, the language we have designed permits
analysts to describe ad hoc data as it is, not how one might want it
to be. The descriptions are concise enough to serve as documen-
tation and flexible enough to describe most of the data formats we
have seen in practice, including ASCII, binary, Cobol, and mixed
data formats. From these descriptions, a compiler can produce data
structure declarations for representing the data in the host language
of the data description language as well as parsing and printing rou-
tines. Because the compiler is generating software artifacts used to
manipulate the data, analysts have to keep the data description up
to date, ensuring it can serve as living documentation.

The declarative nature of PADS descriptions facilitates the inser-
tion of error handling code. The generated parsing code checks all
possible error cases. Because these checks appear only in gener-
ated code, they do not clutter the high-level declarative description
of the data source. The result of a parse is a pair consisting of a
canonical in-memory representation of the data and a parse descrip-
tor. The parse descriptor precisely characterizes both the syntactic
and the semantic errors that occurred during parsing. This structure
allows analysts to choose how to respond to errors in application-
specific ways.
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Figure 1: A fragment of data in Apache Common Log Format.

Finally, a PADS description gives enough information about the
structure of the data that it is possible to generate automatically a
wide variety of useful tools customized to the particular format.
Examples of such tools include statistical analyses, format convert-
ers, data adaptors to connect to query engines like XQuery [9], and
visualizers. Using generic programming techniques [8, 19, 21],
third party developers can design tools that will work for any PADS
description.

This paper does not describe new research, but rather collects
and summarizes the work done in the PADS project. The interested
reader is invited to read more about individual aspects of the project
in the original papers. The project is the work of many people over
a long period of time; all contributors are listed in the acknowl-
edgements section of the paper.

The rest of the paper is organized as follows. Section 2 ex-
plains what a PADS data description language looks like by working
through a simple example. Section 3 describes the output of a PADS
compiler. Section 4 describes a formal semantics for data descrip-
tion languages, which serves as a specification for how PADS data
description languages should behave, regardless of the host lan-
guage in which they are embedded. Section 5 describes the kinds
of tools we can generate from PADS descriptions as well as how
generic programming makes third-party tool generation possible.
Section 6 describes how we can leverage large quantities of data to
learn PADS descriptions rather than having to write them entirely
by hand. Section 7 briefly reviews related work and Section 8 con-
cludes.

2. WHAT YOU SAY
In this section, we briefly describe what a PADS data description

language looks like by working through a simple example. Figure 1
gives a small fragment of a web access log in Apache Common Log
Format (CLF) [5]. Each time an Apache web server receives a re-
quest, it writes such an entry to its access log. The first field denotes
the IP address or host name of the client making the request. The
next two columns denote the identity of the client user, the first as
determined by the identd function on the client machine and the
second as determined by HTTP authentication. If the information
is not available, the server writes a - instead. The next field is the
time stamp of the request, in brackets. It is followed by the request
itself in double quotes. The request has three pieces: the HTTP
method used by the client, the requested url, and the version of
HTTP used for the transaction. The format ends with two integers,
the first of which is the three-digit response code sent back to the
client and the second is the number of bytes returned. If no bytes
were returned, this last number will be a dash instead.

PADS uses a type metaphor to describe ad hoc data. Base types
describe atomic pieces of data and type constructors describe how
to build compound descriptions from simpler ones. Each PADS
type plays two roles: it defines a grammar for parsing the data
and a format-specific data structure in which to store the result of
the parse. We have developed versions of PADS for C [11] and
ML [21], both of which are available for download on the web with
an open-source license [23]. We are currently developing a ver-
sion for Haskell, which we will use as the example language in this
paper. For each language binding, we re-use the types of the host
language in the data description language. PADS also uses predicate

[pads|
type CLF_t = [Line Entry_t]
data Entry_t =
{ host :: Source_t,
’ ’, identdID :: ID_t,
’ ’, httpID :: ID_t,
’ ’, time :: TimeStamp_t,
’ ’, request :: Request_t,
’ ’, response :: Response_t,
’ ’, contentLen :: ContentLength_t

}

data Source_t = IP IP_t | Host Host_t

data ID_t = Missing ’-’ | Id (Pstring ’ ’)

data Request_t =
{ ’"’, method :: Method_t,
’ ’, url :: Pstring ’ ’,
’ ’, version :: Version_t,
’"’ }

data Version_t =
{"HTTP/", major :: Pint, ’.’, minor :: Pint }

data Method_t = GET | PUT | POST | HEAD
| DELETE | LINK | UNLINK

type Response_t = constrain r :: Pint
where <| 100 <= r && r < 600 |>

data ContentLength_t = NotAvailable ’-’
| ContentLength Pint

|]

Figure 2: PADS/HASKELL description of CLF data.

expressions in the host language to describe semantic properties of
the data, such as the range of integer values or correlations between
data items.

The PADS/HASKELL description in Figure 2 describes the CLF
data format. We embed PADS in Haskell using Haskell’s quasi-
quoting mechanism [20]. All of the code inside the quasi-quotes
[pads|...|] is PADS/HASKELL; the identifier pads tells the
Haskell parser which quasi-quoter to use to process the enclosed
code. Any code written outside of the quasi-quotes is ordinary
Haskell. Moreover, Haskell declarations written prior to such quotes
are in scope and available in the PADS/HASKELL code. At com-
pile time, the Haskell compiler calls the PADS quasi-quoter to con-
vert the PADS/HASKELL code to plain Haskell declarations, which
are spliced into the source code at the point of the quasi-quotation.
These declarations are subsequently in scope for any Haskell code
that follows. This mechanism enables us to completely control the
syntax of our data description language while still inter-operating
with the host language. Indeed, the ability to alternate back and
forth at will between PADS and Haskell declarations provides a
smooth, flexible and pleasing programming experience — the two
languages act as one.

The first line of the description declares the type CLF_t, which
describes the entirety of an access log. It says that such a log is
a list of lines of type Entry_t. The next line declares the type
Entry_t, which is a record describing a single entry in the log. It
says that an entry is a sequence of seven fields; each field is given a



newtype CLF_t = CLF_t [Entry_t]
data Entry_t = Entry_t

{host :: Source_t,
identdID :: ID_t,
httpID :: ID_t,
time :: TimeStamp_t,
request :: Request_t,
response :: Response_t,
contentLen :: ContentLength_t}

data Source_t = IP IP_t | Host Host_t
data ID_t = Missing | Id Pstring
...
newtype Response_t = Response_t Pint

Figure 3: Generated representation types.

name and an associated type. For example, the host field has type
Source_t, which is also declared in the figure. In addition to the
named fields, there are literal characters in the record declaration,
which correspond to literals in the data. For example, between the
host and identdID fields, there is a space character (’ ’).

The Source_t type is an interesting example of a datatype:
a value of this type is either an IP address IP_t or a Host_t,
where IP_t and Host_t are PADS base types describing IP ad-
dresses and host names, respectively. The branches of a datatype
are attempted in order; the parser greedily selects the first branch
that matches. The labels IP and Host tag the parsed value as
belonging to the first or second branch, respectively. Type ID_t
is another datatype. In this case, the first branch corresponds to a
data format with the literal ’-’. The type Method_t is a datatype
where the branch labels correspond to the data, and so the argument
type to the branch label is omitted.

Base types describe atomic pieces of data. Examples of base
types include integers (Pint) and floats (Pfloat), single charac-
ters (Pchar) and strings (Pstring ’ ’), IP addresses (IP_t)
and host names (Host_t), dates (Date_t), and many others.
The type Pstring ’ ’ is an example of a parameterized type.
In general, a string could go on forever. The parameter specifies
when the string should stop, in this case, when the parser encoun-
ters a space. To account for more general stopping conditions,
PADS/HASKELL provides the base type PstringME, which takes
a regular expression as a parameter. This type matches the longest
string that matches the argument regular expression.

Finally, the type Response_t is an example of a constrained
type. It specifies that a Response_t is a Pint between 100 and
599, inclusive. In the declaration, the variable r is bound to the
result of parsing the input as a Pint, after which the predicate
given in the where clause is evaluated. The type matches if the
predicate evaluates to True. The brackets <|...|> indicate that
the enclosed code is pure Haskell code.

3. WHAT YOU GET
From a PADS specification, the compiler generates a pair of data

structures: one for the in-memory representation of the parsed data
and an isomorphic structure for meta-data such as the number and
type of errors. The form of the generated representation type corre-
sponds to the form of the type in the PADS description: PADS lists
compile to Haskell lists, records to records, and data types to data
types. Constrained types map to the representation of the under-
lying type. Figure 3 gives a selection of the representation types
generated for the CLF description.

The meta-data types, shown in Figure 3, have a similar structure.
These declarations make use of the type Base_md to describe the
number and type of errors detected during parsing:

type CLF_t_md = (Base_md, [Entry_t_md]),
type Entry_t_md = (Base_md, Entry_t_inner_md),
data Entry_t_inner_md = Entry_t_inner_md

{host_md :: Source_t_md,
identdID_md :: ID_t_md,
httpID_md :: ID_t_md,
time_md :: TimeStamp_t_md,
request_md :: Request_t_md,
response_md :: Response_t_md,
contentLen_md :: ContentLength_t_md}

type Source_t_md = (Base_md, Source_t_inner_md)
data Source_t_inner_md

= IP_md IP_t_md | Host_md Host_t_md
data ID_t = Missing | Id Pstring
data ID_t_inner_md

= Missing_md Base_md
| Id_md (Base_md, Base_md)

...
newtype Response_t = Response_t Pint

Figure 4: Generated meta-data types.

data Base_md = Base_md
{ numErrors :: Int,
errInfo :: Maybe ErrInfo }

data ErrInfo = ErrInfo
{ msg :: ErrMsg,
position :: Maybe Position }

Each generated meta-data type pairs a generic Base_md with a
type-specific meta-data structure. The Base_md type summarizes
the errors that occurred within the corresponding structure while
the type-specific meta-data localizes error information. This struc-
ture allows analysts to handle errors in application-specific ways.
By checking the top-level Base_md value, analysts can determine
whether there were any errors during parsing. If the error count
is zero, they know the data parsed without any errors and all the
semantic predicates held. If the error count is non-zero, they can
traverse the meta-data structure to determine precisely where the
errors occurred and what caused them, allowing the analysts to de-
cide whether to discard, repair, or study the errors. This design also
means that the representation is not cluttered with option types in-
dicating that each value could be absent because of an error during
parsing. If an error occurs while parsing a base type, the com-
piler fills in an appropriate default value and marks the meta-data
accordingly.

Finally, the compiler generates a function that parses an input file
into a pair of a representation and a meta-data structure. In Haskell
terms, each generated representation (rep), meta-data (md) pair
belongs to the Pads type class and provide a definition for the
parseFile method:

parseFile :: Pads rep md =>
FilePath -> IO (rep, md)

The return type IO(rep,md) indicates that the function produces
a value of type (rep,md)while causing side-effects such as open-
ing and closing file handles. A particular instance of this function
parses values for the type CLF_t:

parseFile :: FilePath -> IO (CLF_t, CLF_t_md)

The generated parser is a simple recursive-descent parser. This
parsing strategy makes it easy for values early in the parse to af-
fect down-stream choices, for example, to read an integer that de-
termines the length of an upcoming list or a tag that predicts what
form the body of a record will take. While generally satisfactory,
recursive descent parsers cannot parse left-recursive grammars and



can require exponential time (if there is a lot of backtracking). De-
veloping always-efficient parsers suitable for powerful PADS-like
grammars is currently an active research question [17].

Although not yet implemented in PADS/HASKELL, PADS/C and
PADS/ML both also generate a pretty printing function that takes a
pair of a representation and meta-data structure and serializes the
representation to a file. In Haskell, this function will have the sig-
nature:

printFile :: Pads rep md =>
(rep, md) -> FilePath -> IO ()

4. WHAT IT MEANS
The close correspondence between PADS descriptions and the

type structure of the host language makes the meaning of PADS
descriptions relatively intuitive, but it does not suffice to precisely
define their semantics. To address this deficiency, we developed a
formal calculus, called DDCα, based on dependent type theory [13].

We defined a denotational semantics for DDCα that interprets
each term in multiple ways. In the first interpretation, each DDCα

term τ is mapped to a type that we call its “representation” type,
τrep. This type describes the data structure that stores the host-
language representation of the parsed value. In the second inter-
pretation, each DDCα term τ is mapped to a type that we call its
“meta-data” type, τmd. This type describes the data structure that
stores the host-language representation of the meta-data generated
during parsing. In the third interpretation, each DDCα term τ is
mapped to a parsing function. This parsing function takes as input
a string to be parsed and returns a pair with type (τrep, τmd).

We precisely characterized the canonical relationship between a
representation value and a meta-data value for the two to be mean-
ingfully paired. This canonical relation enforces the property that
the meta-data structure captures the errors in the representation. We
then showed that for every DDCα term τ , the generated parser re-
turns a representation and a meta-data value that are related via
the canonical relation, guaranteeing that the meta-data structure re-
turned by the parser precisely captures the errors detected during
parsing.

In addition, we showed how to translate PADS declarations into
terms of DDCα to document precisely the semantics of those decla-
rations. This process allowed us to find several bugs in the PADS/C
implementation and guided the design of later versions of PADS in-
cluding PADS/ML and PADS/HASKELL. Moreover, the DDCα calcu-
lus is general enough that it also allowed us to define formal seman-
tics for interesting elements of other data description languages,
including PACKETTYPES [22] and DATASCRIPT [4].

We eventually extended DDCα to add a fourth semantic function,
corresponding to a printing function. We explored under what con-
ditions parsing followed by printing or printing followed by parsing
is the identity function [12]. This question is non-trivial because
various parsing functions throw away information from the input,
such as the number of white space characters between two values.
This loss makes it impossible to precisely regenerate the output in
all cases. Of course, it would always be possible to change the
parser to retain enough information to ensure round-tripping laws
for parsing and printing, but it is unclear whether the practical price
is worth the theoretical gain.

5. WHAT ELSE YOU GET
A key insight behind the PADS project is that once someone has

written a description, it is possible to generate a wide variety of
additional tools besides a parser and a printer because the descrip-
tion tells the computer a lot about the data. Each version of PADS

can generate a number of such tools fully automatically from any
description. We describe a few of the most useful tools below.

Accumulator.
With large data sets, it can be difficult to get a “bird’s eye” view

of the data, which requires developing a sense of what the data
“usually” looks like, what fields have a lot of variation, what the
representations for missing values are, etc. The accumulator tool is
designed to help with this problem. It runs over large volumes of
data with the designated format, accumulating a variety of different
statistics for each part of the structure. When all the relevant data
has been processed, the accumulator generates an informative sta-
tistical report. For base types, the accumulator reports information
relevant to that type. For example, for integers, the tool reports the
minimum, maximum, and average values, as well as a histogram
of the most commonly seen values, precisely tracking all values up
to a customizable limit. For strings, the accumulator reports the
observed lengths of the strings and a histogram of observed values.
For structured types, the accumulator tool reports summaries of the
components of the types. For lists, it reports the various lengths of
the list observed in the input. For datatypes, it reports the relative
frequencies of the various branches.

A common use of the accumulator tool is in writing PADS de-
scriptions. It is typical to write an initial description that covers a
representative sample of the data source, using string base types to
specify poorly-understood portions of the data. From this descrip-
tion, the analyst generates and runs the accumulator tool, which
reports both the records in the input that do not match the descrip-
tion and distributions on the place-holder strings. Both pieces of
information allow the analyst to refine the description and iterate.
This process helps in developing descriptions where the data file is
large and has variation throughout the file, making it impossible for
human beings to see all the variation without automated assistance.

A demo of a PADS accumulator is available from the website
http://www.padsproj.org/learning-demo.cgi.

XML Converter.
PADS descriptions typically describe semi-structured data, which

makes it natural to represent the same information in XML. Be-
cause XML is a standard representation for semi-structured data,
there are many tools available to manage XML data. To leverage
this infrastructure, we developed a tool to convert any PADS de-
scription into a corresponding, format-specific XML Schema and
any data matching the PADS description into XML that matches the
generated Schema. The PADS website also has a demo of this tool.

Relational Converter.
Although not all PADS descriptions describe essentially relational

data, some do, and for such descriptions, it can be useful to convert
the raw data into a “cleaned-up” form suitable for loading into a
relational database. The common log format we saw in Section 2
is an example of such a data source. Its raw form is difficult to
include via a typical database import function because of the extra-
neous punctuation, but conceptually it is a simple table. The PADS
relational converter tool maps the raw data into a delimited col-
umn form, where the user can specify the delimiter. We have used
this tool at AT&T to import data into the Daytona database system.
Again, the PADS website has a demo of this tool.

XQuery Integration.
An obviously useful tool for ad hoc data sources is the abil-

ity to query the data. Inventing an entirely new query language



for what is essentially semi-structured data seemed like reinventing
the wheel. Instead, we decided to develop a tool that would allow
analysts to query any data source with a PADS description using
XQUERY [18]. An obvious approach to this integration would be
to use the XML converter to translate the original data into XML
and then run an XQuery implementation on the resulting document.
However, the large amount of extra space required to represent the
data in XML, typically a factor of eight, led to unacceptable per-
formance with this approach. Instead, we were able to leverage the
abstract data model provided by the Galax [10] implementation of
XQUERY to enable Galax to query PADS data directly. The origi-
nal implementation of this tool [9] only allowed query results to be
returned in XML, but a subsequent extension allowed results to be
mapped back into the original form [8].

Harmony integration.
The Harmony synchronization framework [24] allows two repli-

cas of a document to be synchronized with each other. Internally,
Harmony works on unordered trees. Synchronizing particular data
formats requires writing viewers to map between the on-disk repre-
sentation and Harmony’s tree model. To avoid having to write such
viewers by hand, we wrote a tool to automatically convert any data
with a PADS description into the required format and back. To-
gether, PADS and Harmony allow effective, semantics-preserving
synchronization of arbitrary ad hoc data sets.

5.1 Implementing tools
The best way to implement these description-specific tools has

been the subject of on-going research. In the original implemen-
tation of PADS, the compiler generated these tools. This approach
gives a lot of flexibility and is fairly straightforward to implement,
but it means that only compiler writers can add new tools, a signif-
icant limitation.

To address this problem, the PADS/ML compiler generates generic
“traversal functions” [8, 21] in addition to the standard type decla-
rations and parsing functions. Using this infrastructure, third-party
developers can write tools without having to change the compiler.
However, the downside is that the interface to the set of generic
functions is extremely complex. The complexities in the interface
arose because the host language for PADS/ML, OCAML, does not
provide direct support for generic programming, In order to obtain
the generic programming facilities we required, we were forced to
implement sophisticated type-directed algorithms in the structures
and functors supplied by OCAML’s powerful module system. The
result was a system that is expressive enough to accomplish the
desired tasks, but useable only by extreme experts.

One of the motivations for building a version of PADS in Haskell
is that Haskell does provide a lot of support for generic program-
ming [19, 25]. We anticipate that writing third party tools in the
PADS/HASKELL framework will be significantly easier.

6. SOMETHING FOR FREE
The time and expertise required to write a PADS description from

scratch can be a significant impediment to using the system. De-
pending on the complexity of a data source, it can take hours to days
to produce a comprehensive PADS description. To shorten this pro-
cess, we have developed a system that automatically infers a PADS
description from multiple positive examples of the data format [14].
This learning process can be connected to the PADS tool infrastruc-
ture to automatically produce tools to generate accumulator reports
or XML representations of ad hoc data sources without any hu-
man intervention. A demo of this capability is available on the web
http://www.padsproj.org/learning-demo.cgi.

The inference system works in a series of stages. In the first
stage, the input data is broken into chunks, each of which is a posi-
tive instance of the data format to be learned. We require the user to
tell us how to do this division. Typical examples include breaking
a file on newline boundaries or treating each file in a collection of
files as an instance.

In the second stage, we convert each chunk into a sequence of
tokens, where the collection of possible tokens is specified using
regular expressions. By default, the system provides tokens for
integers, floats, various kinds of strings, white space, and punctua-
tion. It also provides domain-specific tokens for systems-like data,
such as IP addresses, MAC addresses, email addresses, dates, and
times. The intuition is that this collection should include atomic
pieces of data that a human would glance at and know what it means
with 100% confidence. The system is parameterized so users can
provide their own set of regular expressions.

In the third stage, the system computes a histogram for each to-
ken, counting the number of records in which the token appears
zero times, one time, two times, etc. Tokens with similar his-
tograms are clustered, based on a similarity metric. The cluster
that “best describes” the data is selected, using a heuristic that re-
wards high coverage, meaning the cluster appears in almost every
record, and narrowness, meaning that the tokens in the cluster ap-
pear with the same frequency in almost all records. For example, if
every record had exactly one comma and two quotation characters,
then the comma and two quotation tokens would be clustered and
that cluster would be selected. The system next partitions the input
based on the selected cluster, with one partition for each observed
order for the cluster tokens and an extra partition for the records
that do not contain all the tokens in the cluster. This collection of
partitions will correspond to a datatype in the eventual description,
with one branch for each non-empty partition. (In the case where
there is only one partition, this datatype is omitted from the inferred
description.) Within a partition, all records have all the tokens in
the cluster in the same order. Each such partition will correspond to
a record type declaration in the generated description. This record
type contains each of the tokens in the appropriate order. To in-
fer the description for the data between these tokens, the system
divides each input record into the tokens before the first cluster to-
ken, between the first and second cluster token, etc. Each of these
groups is then recursively analysed to produce a description that is
slotted into the top-level record declaration.

In the fourth stage, we greedily search for the best possible de-
scription in the nearby area. This search is executed by succes-
sively applying rewriting rules to the inferred description and scor-
ing the results of the rewrites. The search continues until it is no
longer possible to rewrite the description in such a way as to ob-
tain a new description with a superior score. The scoring function
itself uses an information-theoretic measure called the Minimum
Description Length (MDL) [16] to evaluate the quality of any de-
scription. This measure counts the complexity of the description
and the complexity of the data given the description, thereby pe-
nalizing both simplistic descriptions (like String) that cover the
data without adding any information as well as overly complex de-
scriptions, such as the description that specifies each character in
order.

6.1 Learning tokenizations
The learning algorithm is very sensitive to how the input is tok-

enized. For certain basic types, like filepaths, the regular expression
that defines legal file paths is very general. Almost every string of
characters is a file path, but that does not mean it is likely that ev-
ery string of characters is a file path. It is fairly easy for human



beings to look at a data set and identify the filepaths. We explored
whether machine-learning techniques could help us develop a tok-
enizer that could capture this concept effectively [26]. The result
of this study was that the learning system required a lot of data and
the inference process was slower, but the quality of the inferred
descriptions improved. Still, more research in this area may well
improve the quality of descriptions relative to the time required to
learn them.

6.2 Incremental Inference
The original inferencing algorithm produces a description ex-

clusively from a relatively small, single input data set. Unfortu-
nately, this original design made it impossible to use inference to
improve an existing description, to process streaming data or to
process large data sets. To address these weaknesses, we are in the
process of developing an incremental version of the learning sys-
tem [28]. In this version, the learning system optionally takes an
existing description as input in addition to the data. The output of
the system is a new description that covers all the new data while
diverging from the original description as little as possible.

This architecture allows us to scale to larger data sets by iterating
the inference process. We can either start with a supplied descrip-
tion or use the original learning algorithm to produce a description
from a subset of the supplied data. We then divide the remaining
data into groups of appropriate size and iteratively apply the incre-
mental algorithm to these groups, eventually returning a description
that covers the entirety of the original data set. We are in the pro-
cess of evaluating the effectiveness of this approach and how well
it scales.

6.3 Putting humans in the loop
Even if format inference were perfect, we would still need hu-

man involvement to produce the high-quality descriptions. At the
very least, it is not possible for the computer to infer meaning-
ful labels for fields in records. For example, the computer cannot
tell if a given IP address is a source or a destination. In the end,
it is likely that the best system for inferring descriptions will use a
combination of machine learning techniques and a high-power user
interface that lets humans explore the data and edit descriptions ef-
fectively.

One kind of human-friendly interface we have explored in detail
is a new sort of markup language for raw text [27]. This markup
language, called ANNE, helps users interactively generate PADS de-
scriptions with human-readable names and the exact structure de-
sired. Given a new ad hoc data source, an ANNE programmer edits
the document to add annotations that are somewhat akin to XML
tags, yet contain bits of grammatical information that serve to spec-
ify the syntactic structure of the document. These annotations in-
clude elements that specify constants, optional data, alternatives,
enumerations, sequences, tabular data, and recursive patterns. The
ANNE system uses a combination of user annotations, smart de-
faults, and the raw data itself to extract a PADS description from
the document. This PADS description can then be used to parse
the data and transform it into an XML parse tree, which may be
viewed through a browser for analysis or debugging purposes. The
description can also be saved as documentation or used to gener-
ate any of the other PADS tools. Like other languages in the PADS
family, ANNE has a formal semantics. This time, the semantics is
based on concepts drawn from Relevance Logic [2] as opposed to
type theory. We used the semantics to prove a number of inter-
esting properties concerning the expressiveness of ANNE and the
conditions under which it is able to extract a desired context-free
grammar from a document.

One of the inspirations for ANNE was an earlier system called
LAUNCHPADS [6]. This tool used a graphical user interface to
help human beings write descriptions. The tool presents users with
sample input and provided a tool palette for introducing structure
such as lists, datatypes, and records. An integration of a visual
tool like LAUNCHPADS or a text-based annotation language like
ANNE and the incremental inferencing algorithm is likely the best
approach to producing high-quality descriptions quickly.

7. WHAT OTHERS HAVE DONE
There is a vast literature on parsing, so here we only briefly re-

view related work on data description languages. Our paper defin-
ing the semantics of PADS contains a detailed discussion of a large
body of related work [13]. The interested reader is invited to con-
sult that paper for a more detailed discussion. In addition, each
of the PADS papers mentioned here discusses the relevant related
work. For more information on particular aspects of the PADS
project, consult the relevant paper.

There are many data description languages for designing data
formats, including ASN.1 [7] and ASDL [1], or, more recently,
Google Protobufs [15] and Apache Avro [3]. These declarative lan-
guages allow programmers to describe the logical representation of
data and then automatically generate a physical representation and
functions to map between the two representations. Although useful
for many purposes, such tools are of little use when the physical
representation is already fixed, which is the domain that PADS tar-
gets.

Traditional parsing systems such as YACC generate parsers from
declarative specifications; however, they are not particularly well
suited for writing data descriptions. In particular, such systems
generally require users to write a separate lexer and construct in-
memory data structures by hand. They typically only work on
ASCII data and do not allow data-dependent parsing.

The languages and systems that are most closely related to PADS
are PACKETTYPES [22] and DATASCRIPT [4]. Each of these sys-
tems allow declarative descriptions of physical data, motivated re-
spectively by the goals of parsing TCP/IP packets and JAVA jar-
files. As with PADS, these languages all use a type-directed ap-
proach to describing physical data formats and permit the user to
specify semantic constraints in a host language. These systems dif-
fer from PADS in focusing only on binary data and assuming that
the data is error free, halting if an error is detected. In addition,
these systems focus on the parsing problem, rather than also pro-
viding a body of auxiliary tools. None of these systems attempt to
infer descriptions from raw data.

8. WHERE WE GO FROM HERE
Various problems remain open. Developing new tools is still dif-

ficult. We anticipate that working in the context of Haskell, which
has an active research community in generic and type-directed pro-
gramming, will help in this area. Format inferencing is reasonably
successful, but we believe the inferencing process can be further
improved by incorporating more advanced machine-learning tech-
niques and by including the user in strategic decisions. Finally, to
get widespread adoption of the technology, it is likely necessary
to integrate a version of PADS more tightly into standard tools for
manipulating data.
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